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Abstract- To analyze the nano-dipole antennas using Surface Impedance Generating Operator (SIGO), we need to
compute the dyadic Green’s functions that are represented in triple summations. For successful implementation of
SIGO using the MoM, fast computation of these series is necessary. Unfortunately, these series converge slowly,
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especially when the observation points come close to the source points. Ewald sum technique is used to improve the
convergence rate of these series. On this paper, we optimize the Ewald method for the problem of plasmonic nano-
dipole. This problem differs from those that normally are solved by Ewald sum technique in two main aspects. First,
because SIGO is a kind of surface integral equation (SIE) method, both source and observation points are located on the
boundary rather than inside the cavity. Second, the materials of nano-dipole arms, which are metals at optical
frequencies, are lossy with negative index. These conditions entail that special measures are taken to apply rapid
summation techniques effectively. It is shown that by controlling the parameters of rapid summation techniques, good

convergence rate is achieved.

Keywords: Surface Impedance Generating Operator (SIGO), Method of Moment (MoM), Plasmonics, Nano-Antenna,

Dyadic Green Function.

1. Introduction

Different optical nano structures have been
proposed for different applications, including
mixers, couplers and sensors in the last few
decades. Designing these nano devices requires
simulation tools that are able to both effectively
model the materials at optical frequencies and also
overcome the complexities of nanoscale
discretization. Good commercial simulation
packages are available for analysing the optical
nano devices. However, these packages are not
efficient for optimization. Engineering the desired
component sometimes needs the optimization
process to be repeated thousands of times. If each
iteration takes long time to finish, then the
optimization will be prohibitive.

Surface integral equation techniques benefit from
two advantages compared with other numerical
methods in electromagnetics. In contrast to the
volumetric methods, the SIE formulations only
need to discretise the surface, hence, they have
lower number of unknowns. Moreover, the
radiation conditions are inherently satisfied by the
Green’s functions. Therefore, no PML or
absorbing boundary condition would be required to
terminate the numerical window.

SIGO [1] is a kind of SIE formulation that
separates the interior and exterior problems and
reduces the main problem into several smaller sub-
problems. Each sub-problem can be handled
independently. After all, the results are combined
to find the solution of the main problem. Due to
these specifications, the method is amenable for
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parallel processing and is efficient for

optimization.

In this paper, the analysis of an optical nano dipole
using the SIGO formulation is considered. The
Green’s functions that are needed to be computed
for these problems are normally obtained in
spectral representation in triple series form [2].
These series converge slowly. So, in order to reach
a reasonable precision, one may need to sum many
number of terms. Some methods have been
proposed to improve the convergence rate of the
triple series encountered in rectangular cavities
with hard boundary conditions [3]. These methods
normally apply the Poisson’s formula and
introduce the spatial counterpart of the mentioned
spectral representation.

A new scheme for very fast computation of the
Green’s Functions in a rectangular enclosure is
introduced in [4], which is based on a Chebyshev
polynomial approximation of the vector and scalar
potentials in three dimensions. In [5], a new
technique is used in which the original spectral
series is split into several terms through a Taylor
series expansion. Then individual Taylor terms are
evaluated. Higher order Taylor terms lead to faster
convergence. Finally, Kummer technique is
applied to improve the convergence of the
remaining series.

The problem of analysing optical nano dipoles
using SIGO formulation differs from works with
PEC walls in two aspects. First, both source and
observation points are located on the boundary.
Second, the cavity is made of metals at optical
frequencies, which are lossy with negative index.
We will show that the proposed Ewald method for
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rapid summation can be employed in the current
situation, if proper parameters are selected.

The paper is organized as follows. In section 2,
formulation of the problem is expressed and in
section 3, rapid summation techniques are applied
to the dyadic Green’s function of optical nano
dipole. Some concluding remarks are presented in
section 4.

2. Formulation of the Problem

Fig. 1 shows a nono-dipole antenna with two
monomers deployed as the arms of the nano
dipole, each with volume V and surface S that is
normally made of Au, Al or Ag. Other materials,
however, may be used.

Figure 1 Nano-Dipole Antenna.

In SIGO formulation, an impedance operator is
defined as [1]:

() = jouff] GI'(rr)-()ds', rres (1)
Where
VxVxG(r,r') - o’ ueG (r,r) = 15(r,r')

fix[ VG (r,r)]

=0 3

Generally this dyadic Green function has 9
components [2]. One can use the method of Ga to
calculate the required electric dyadic Green
function. For the rectangular monomer shown in
Fig.1, the vector potential Green function Ga has
three diagonal components, each of them is in the
following form:
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Where e; ,, , are Neumann coefficients [2] and

v (-2
Pai W L T 4)

We have to compute the G5 in order to be able to
represent (1) in matrix form and combine the
results with exterior sub-problem.

In equation (3), rand " are located on the
boundary. For the specific component G;* the
source and observation points are both on the faces
parallel to XY and XZ planes.

In the next section, G;* is calculated for different
material types and different source-observation
point combinations.

3. Rapid Summation Technique

The Ewald sum technique is used to split the
dyadic component into two parts. The first part is a
hybrid sum of modal series, which is actually a
kind of spectral domain representation. The
remaining part is introduced in the spatial domain
as the image series. These two series are both
rapidly convergent, and therefore, the Green’s
Function can be evaluated correctly with only a
few numbers of terms in the series. Utilizing
metals with negative index in optical frequencies,
leads into imaginary wavenumber (k) [6].
Therefore, the parameter I' defined in (4) will
become a complex value having both real and
imaginary parts. However, for dielectrics (e.g.
glass) the values of T' are pure imaginary or pure
real depending on the mode index. This will affect
the convergence rate.

The key component of this technique is a
parameter that is called splitting parameter and has
a crucial role for the improvement of the
convergence rate. This parameter is denoted by E.
Some suggestions for selecting the value of E have
been introduced in the literature [7]. In Fig. 2, the
effect of E values on the convergence of solution
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Figure 2 Convergence of G%* as E changes.
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Figure 3 Convergence of G%* as E changes.
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Figure 4 Number of terms needed in Ewald technique.

can be observed. The number of terms for spectral
part is selected to be 6 (Fig. 4). This convergence
can be obtained by direct summation, when at least
about 27000 numbers of terms are summed
together. This takes around 5.5 seconds which is
almost 500 times more than the required time for
Ewald sum technique. Therefore, considerably
faster computation is achieved. In all presented
results, the source point is located at x'=20nm |,
y'=0 , z'=20nm. Different observation points as
well as material types are considered. It is worth
mentioning that Eq (3) and consequently the
presented results are valid for all rectangular
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monomers that are depicted in Fig. 1. For other
geometries, the required Green’s Dyads should be
computed in advance.

As shown in Figures (2) and (3), when the
observation point is far from the source, the
convergence occurs faster than the time it is
placed in a closer distance.

4. Conclusion

The Ewald sum technique was applied to the
electric dyadic Green’s function of SIGO formula.
It was shown that proper value of splitting
parameter would lead to successful summation and
rapid convergence when the metals at optical
frequencies are analysed.
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